

Who needs fibers?

 Emilua has this opinionated style of going full fibered to approach single-VM
concurrency. That’s an unusual approach in Lua as far as I know and it begs the
question: who needs fibers?

So, to illustrate this need, I’ll talk about the experience I had in my
previous job. Usually I never talk about work outside of my coworkers circle and
the reason is I’m just too worried to not reveal any technological or strategic
business secrets. Even thou I moved on and now I’m enjoying a well deserved
little vacation, I keep my habits intact. Therefore I’ll only describe what can
be considered standard industry practice or very obvious consequences that
anyone implementing the same protocols would infer right away (yeah, I’ll hide
many optimizations and secret sauces that I developed for my boss). That will be
one example where fibers matter, but other examples exist (e.g. some patterns of
rate-limiting requests to process-global connections).

In my previous job, I was hired (among other things) to develop a WebSocket
gateway that would accept connections and dispatch requests to the correct
service in our internal network (e.g. authentication provider, wallet
management, market data subscription, order processor, etc).

The usual approach to web development is to serve HTTP requests and forward all
synchronization and state management complexities to a database. Therefore you
just follow the HTTP stateless road and see no state. If that is the case,
you’ll never understand why fibers are important for you’re essentially only
implementing a dumb ping-pong protocol. To scale the web application, you just
spawn more processes and hope the database will hold out well.

These traditional web applications follow the KISS principle so closely that if
you add more concurrency to the same process/thread itself, they already start
to fall apart. The applications themselves may not need to manage per-connection
state, but the underlying database drivers will do need to handle concurrent
accesses by several connection handlers. This is a low-level detail rarely
exposed to higher layers so you probably aren’t the one who needs to worry
about it. Mike
Bayer wrote about his experiences with Python database drivers and async
madness. If anything, Mike implicitly argues against the use of fibers (at
least to the developers writing the high-level business logic).

Well…​ if you don’t need fibers vocabulary, what will fibers win over you? If
you don’t need to use fibers vocabulary, the fibers will work just as plain
coroutines (that Lua already provides) and you’ll have linear clear code. You
lose nothing.

However there are people who do need fibers vocabulary. They may just be the
ones implementing the database drivers that your async web application will make
use of and they’ll appreciate the presence of such vocabulary to tame the
concurrency beast.

Back to my work, I too needed primitives to tame concurrency issues. Let’s
explain the gateway task again (this time for real). The gateway wouldn’t manage
HTTP requests. The gateway would manage WebSocket connections and that implies
stateful connections. The user logs in and now any request going through that
connection will have the user credentials already applied. So far, there isn’t
any need for sync primitives and even coroutines will do (that’s how I started
the project btw, using plain coroutines). However we already have state.

Betting on market goods

If you’re already familiar with stock exchanges, skip this section. If you don’t
know anything on this business, then follow on and you should have a small
introduction that is good enough for the rest of this text.

Putting in simple terms, a stock exchange is a place where you can place buy or
sell orders on some goods. These houses grew a lot in complexity by allowing
very elaborate contracts (e.g. future options) to be made and still be
negotiated in volumes, but this complexity doesn’t really concern us — humble
non-traders programmers.

A market data is a constantly-changing price-ordered table that you can query
and subscribe to. Essentially it has three pieces of information at least —
order id (this one is complex as sometimes you only has access to the book by
price or by price band, but it is included here anyway as a simplification of
the underlying topic), quantity, and price. The following two tables illustrate
an order book (the units don’t matter):

Table 1. Buy orders

	ID
	Quantity
	Price

	1243

	611

	185

	334

	55

	184

	1500

	1084

	183

	1501

	1951

	182

Table 2. Sell orders

	ID
	Quantity
	Price

	1

	58

	186

	5

	69

	187

	4

	21

	188

	2

	1

	189

When the prices advertised on the top rows of the two tables match, an order
execution (maybe partially) happens and at least one row disappears. You’re
allowed to place orders on this book after you deposit money/goods on the
exchange wallets. You can also change or cancel orders that you placed
previously according to the house rules. These services are more accessible
nowadays due to crypto-markets. You can negotiate on any instrument pair offered
by the exchange (e.g. bitcoin against dollars).

When you subscribe to some market data, you process an influx of events
(e.g. change row X, insert row Y, delete row Z) to derive its current view.

One of the gateway’s responsibilities was to manage subscriptions to market
data. In the traditional scenario (cf. the FIX protocol), you have an internal
network where one node per instrument will broadcast two signals — a large
snapshot every few seconds, and a small incremental update on every market
event. If you’re participating in this internal network, you combine these two
signals and create a current view of the market data. The incremental applies
against the previous view of the market data and produces a new view. If you
lose one incremental event (the events would be delivered through UDP-like
protocols), then you await until the next snapshot (a full serialized view) and
start again.

I’m not a trader. I was only hired for my C++ skills. Any question I had
on the business model or traditional industry practice would be promptly
answered by other talented guys in the company.

This architecture doesn’t really work on web-facing services where broadcast
messages aren’t really readily available, but that’s how the internal pipeline
was designed. The WebSocket gateway would subscribe to these two network signals
and synthesize new internal in-process signals. There is a single
snapshot-incremental channel pair per-instrument consumer to the whole process
that will broadcast the derived signal to N separate in-process
subscribers. In-process subscribers (i.e. the WebSocket connection handlers)
wouldn’t be able to tell whether an update was derived from the diff between two
snapshots or directly mirrored from a real network status update.

[image: md subs]

Figure 1. The gateway subscription model

When the WebSocket client requests a market data subscription, he’ll receive an
initial snapshot containing the current view of the market data and then
subsequent incremental updates that must be applied against the last view to
produce the most up-to-date market data view. The client has the easy task, no
race to deal with, a reliable connection, and a very simple very serial
algorithm to apply. However the server…​ not so lucky. The gateway hides all
the complexity from the client. The client will never see a “lost incremental”
event.

This architecture allows for a lot of consumers in the internal network
(e.g. several gateways as well as co-location paying customers that want minimum
latency) while it puts little pressure on the market data providers.

The snapshot-incremental processing code (i.e. the code that only deals with the
internal network side to produce in-process events) was a lot of headache
already. What if you receive the incremental sooner than the snapshot it applies
to (they come from two distinct channels after all, and there is no implicit
synchronization between different network channels)? That’s just one among
several racy events that could happen. When the application starts, it already
begins to handle WebSocket connections and these connections will make requests
before you synchronized against low-volume slow-pace markets (i.e. you may
receive a subscription request from the WebSocket channel for a market that you
haven’t received the first snapshot yet). That’s not an application model that
fits well in the database paradigm. That’s a truly valid use case for sync
primitives (and fiber vocabulary).

Listing 1. Rough skel on how to deal with the first-sync problem
 function handle_sub_req(self, inst)
 if not snapshots[inst] then
 error('Invalid instrument')
 end

 local msg
 scope(function()
 snapshots[inst].mutex:lock() ①
 scope_cleanup_push(function() snapshots[inst].mutex:unlock() end)

 -- Wait on the cond until the first snapshot for that instrument
 -- is received.
 while not snapshots[inst]:is_valid() do
 snapshots[inst].first_sync:wait(snapshots[inst].mutex) ②
 end

 msg = snapshots[inst]:serialize()
 self:subscribe(inst)
 end)
 self:send_msg(msg)
end

	① A mutex (fiber vocabulary).

	② A condition variable (fiber vocabulary).

However the headache doesn’t stop there. One of the order types is the
cancel-on-disconnect order. For that order, if the client loses its connection,
you should send a cancel-order request to the matching engine. That means you
now have a per-process per-connection (non-persistent) state that also doesn’t
fit in the database model. Say, what happens if the process receives a SIGINT?
Now it must cascade-cancel every connection handler (the tasks) and you need
some cancellation vocabulary to do the right thing (cancel all the
cancel-on-disconnect orders). This is vocabulary also offered by fibers not
offered by plain coroutines.

There are several approaches to handle cancel-on-disconnect orders. The
amount of responsibility handed to the gateway varies with
approach. Nonetheless, the example is still a valid approach and keeps being
useful to illustrate why cancellation vocabulary matters.

WebSocket (stateful) channels present plenty of other opportunities to use sync
primitives. Remember we synthesized in-process signals out of network events?
Well, that means shared event queues. If a client subscribe to a new instrument,
there is a new event queue. If the client unsubscribe from an instrument, we
must remove one shared event queue (and we better do it right). Guess what
happens to the event consumer if the underlying queue being served is destroyed
when the fiber reading messages receives an unsubscription request? To be fair,
this problem is more severe in C++ where we don’t have the luxury of a GC, but
Lua would face problems as well if I was to implement all the scheduling
optimization tricks that I’ve done for the C++ project. There are so many
possibilities of races here (any point where async IO happens is a
context-switch to other tasks that might be touching on the same resources, or
could just as well be a point where the task receives a cancellation request to
free all the resources)…​ not only races, but also error-prone scheduling
policies (e.g. you must watch for at least starvation scenarios), or even DoS
protections to apply (e.g. watch for the queue size in slow consumers). Worse,
the high-contention scenario might decrease performance so much that the
application is simply unable to really serve any of its functions.

A gateway that allows not only multiple subscriptions multiplexed through
the same connection but also unsubscriptions is hard enough to encourage many
stock exchanges to just not implement this feature at all. In their houses, if
you want to subscribe to a new instrument, you do so in a new connection. And if
you want to unsubscribe, you just drop the connection. Do notice that you
still need some vocabulary here (how would you implement cancel-on-disconnect
orders for instance?).

The nightmare is real, but so are the opportunities to optimize lots of these
interactions and still perform a correct job. Like I warned previously, I won’t
share any of the secret sauces that I developed for my boss. You only need to
give the problem to someone willing and results will show. I was lucky enough to
have worked with particular talents. The market data guy was reliable enough
that I could just worry about the concurrency issues and forward all market data
algorithms on his back.

Back to this post’s subject, shared resources among concurrent tasks means a
need for sync primitives (e.g. mutexes, and condition variables) that are
non-existent if you rely on sole coroutines. That’s how you keep state
consistent in the face of multiple tasks trying to access the same
resources. This is the answer for “who needs fibers”. Some serious applications
can’t really afford the “stop the world” model from solely database-oriented
sync techniques while a slow request is being fulfilled. Some applications must
deal with events whose only component possessing the required knowledge to
handle the event is the web application (e.g. disconnect events). Some, but
not all, applications need sync primitives and that’s where fibers vocabulary
kicks in (or other equally valid sync-aware choices).

Do notice that while the gateway deals with a lot of concurrency issues,
many of the services in the internal network could work without any
consideration to multitasking at all. Therefore, the nightmare is not a
combinatorial explosion.

Do notice as well that this application also makes use of databases to
store a lot of stuff. Sync primitives are not only for those that can do without
traditional databases. My team certainly wasn’t among the ones that who could do
without databases.

Another approach to do away with the nightmare would be to use the actor model
instead fibers. The actor model also works, but it’s not just simpler. The actor
model is also less performant (there are memory copies everywhere
under-the-hood). Although a poorly optimized fiber-based application can perform
worse than an actor-based application, this is no reason to believe that actors
are a better approach in every front. If you explicitly control the message
queues (as in the fiber model), you gain the opportunity to optimize these
queues by applying rules that lie outside of the concurrency model (i.e. rules
from the business logic). I’ll limit myself to share that I did a mix of fibers
and actor-based concurrency within the same application. That’s also something
that you’re allowed to do (and an approach also supported by Emilua).

Other considerations

	
You’ll not have a course on the usage of traditional sync primitives going
through Emilua docs. Read the POSIX threads manpages instead. Emilua
implements traditional sync primitives that were extensively documented for
decades already. There is no need to write yet-another-tutorial on how to use
a mutex, and so on. I might even reject PRs that try to add these tutorials to
the docs as this would be even more maintenance headache to deal with.

	
Async IO is the primary driving force to introduce fibers instead plain
coroutines in Emilua. Async IO equals to events occurring concurrently to the
application process (e.g. mutating buffers partially written while the
application could try to access them) and any time you want to apply
concurrent IO actions to the same IO object, you’ll need sync primitives
(hence fibers). The single threaded nature from the Lua VM is not enough to
save you from IO concurrency issues.

	
Ironically it’s easier to stumble upon these problems in client applications
(e.g. torrent clients), so I doubt most server guys will ever need to use
fibers directly (they have the database to handle all the complexity after
all). Again, Emilua will not make your application more complex. If you
don’t need the fibers vocabulary, just don’t use it.

	
It’s easy to go from “fibers to coroutines” (i.e. just ignore fibers and act
as if they are plain coroutines), but the opposite is not true. If you’re
half-way through your project and suddenly stumble on the need to use fibers,
you’re screwed. You’ll have to develop half-baked probably racy sync
primitives to work around. That’s why I believe an execution engine for Lua
should have fibers vocabulary from the get-go (as in Emilua). These
applications aren’t easy and any help they can get is welcomed. As a
comparison, let me just inform you that it was far easier to write this Lua
execution engine from the ground-up during my spare time than the WebSocket
gateway described in this blog post.

	
The Lua VM is still thread-unsafe, so you need some extra vocabulary to
exploit possible parallelism (fibers assume shared memory and cannot be used
to represent work split among several Lua VMs as the VMs themselves won’t be
able to share any memory against one another). That’s where Emilua allows you
to spawn more VMs using a heavily actor-inspired API.

	
All concurrency fiber vocabulary available in Emilua follows the cooperative
multitasking model. If you know what you’re doing, that means you can apply
clever scheduling tricks. And if you don’t know what you’re doing, there’s a
small chance that your application will starve other tasks due to some
infinite loop lying around that doesn’t have any IO/timer/sync/yield call (Go
also employed cooperative multitasking in the first versions, it’s not really
a big deal). Emilua will not — as Go did — migrate to preemptive models. Its
community should grow more intelligent over time, not more stupid (as they
saying goes…​ make it idiot-proof, and someone will breed a better
idiot). For the valid (and rare) case where your application need to strongly
guarantee maximum time-slices for each fiber (i.e. the land where only
preemptive multitasking has an answer), Emilua is not the runtime you’re
looking for (although competing API-compatible runtimes could be developed).

	
In case you’re wondering why our cousin NodeJS doesn’t have concurrency
issues…​ well, it has. Check a few of my friend Wander’s
PRs[1][2][3]. Unfortunately
to him, NodeJS has no solid sync vocabulary, so you replace documented
problem-solution pairs discovered through the decades by the same problems but
requiring the solutions to be written in a new-and-not-so-solid style. Emilua
is the one who possesses the tried-and-true tools here.

Wrapping up, I presented an example where sync vocabulary matters (and fibers
are one of the choices here). The example happens to be the last paid job I was
involved with. Other examples exist in the wild.

A note on correctness

Performance must not be placed before correctness. If your code is incorrect,
it’s possible to implement a program that delivers the result in exactly 0
milliseconds, and that program is just equally useless. Emilua is young, and so
far I only focused on correctness. The fiber API won’t break even if you feed it
the following code:

 local sleep_for = require 'sleep_for'

local coro = coroutine.create(function()
 sleep_for(1000)
 print('hello')
 coroutine.yield()
 coroutine.yield()
end)

spawn(function()
 coroutine.resume(coro)
end):detach()
coroutine.resume(coro)

The execution engine will not crash. The only thing that will happen is a normal
Lua error being raised to the appropriate fiber call-stack.

Try to do the same with other fiber implementations to see if they also
hold out. Performance can always be improved later, but an incorrect application
is always an incorrect application and its advertised performance is useless.

I invested some serious effort into the design and implementation of cleanup
handlers to preserve program invariants. Emilua is designed for robustness
first, correctness above performance (honestly if I was worried about
performance, I’d be coding in C, not Lua).

If you find any crash on the execution engine, please report it and I’ll take
the issue seriously (feature requests on the other hand may not receive my
attention in a timely manner).

https://github.com/taskcluster/docker-worker/pull/332

https://github.com/esamattis/node-promisepipe/pull/9

https://github.com/esamattis/node-promisepipe/pull/8

EPUB/nav.xhtml

Table of Contents

		Who needs fibers?

		Start of Content

EPUB/md_subs.png
WebSocket TCP (initial snapshot + followup incrementals...
subscription «—

3
TcP L < Snapshot
WebSocket +——— | Gateway
subscription — | process
3
Incremental
Tcp
WebSocket

subscription

EPUB/avatars/default.jpg

EPUB/headshots/default.jpg

